Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Ethnopharmacol ; 328: 118007, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38492791

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Rosa damascena is an ancient plant with significance in both medicine and perfumery that have a variety of therapeutic properties, including antidepressant, anti-anxiety, and anti-stress effects. Rose damascena essential oil (REO) has been used to treat depression, anxiety and other neurological related disorders in Iranian traditional medicine. However, its precise mechanism of action remains elusive. AIM OF THE STUDY: The aim of this study was to investigate the impact and mechanism underlying the influence of REO on chronic unpredictable mild stress (CUMS) rats. MATERIALS AND METHODS: Gas chromatography-mass spectrometry (GC-MS) technique coupling was used to analyze of the components of REO. A CUMS rat model was replicated to assess the antidepressant effects of varying doses of REO. This assessment encompassed behavioral evaluations, biochemical index measurements, and hematoxylin-eosin staining. For a comprehensive analysis of hippocampal tissues, we employed transcriptomics and incorporated weighting coefficients by means of network pharmacology. These measures allowed us to explore differentially expressed genes and biofunctional pathways affected by REO in the context of depression treatment. Furthermore, GC-MS metabolomics was employed to assess metabolic profiles, while a joint analysis in Metscape facilitated the construction of a network elucidating the links between differentially expressed genes and metabolites, thereby elucidating potential relationships and clarifying key pathways regulated by REO. Finally, the expression of relevant proteins in the key pathways was determined through immunohistochemistry and Western blot analysis. Molecular docking was utilized to investigate the interactions between active components and key targets, thereby validating the experimental results. RESULTS: REO alleviated depressive-like behavior, significantly elevated levels of the neurotransmitter 5-hydroxytryptamine (5-HT), and reduced hippocampal neuronal damage in CUMS rats. This therapeutic effect may be associated with the modulation of the serotonergic synapse signaling pathway. Furthermore, REO rectified metabolic disturbances, primarily through the regulation of amino acid metabolic pathways. Joint analysis revealed five differentially expressed genes (EEF1A1, LOC729197, ATP8A2, NDST4, and GAD2), suggesting their potential in alleviating depressive symptoms by modulating the serotonergic synapse signaling pathway and tryptophan metabolism. REO also modulated the 5-HT2A-mediated extracellular regulated protein kinases-cAMP-response element binding protein-brain-derived neurotrophic factor (ERK-CREB-BDNF) pathway. In addition, molecular docking results indicated that citronellol, geraniol and (E,E)-farnesol in REO may serve as key active ingredients responsible for its antidepressant effects. CONCLUSIONS: This study is the first to report that REO can effectively alleviate CUMS-induced depression-like effects in rats. Additionally, the study offers a comprehensive understanding of its intricate antidepressant mechanism from a multi-omics and multi-level perspective. Our findings hold promise for the clinical application and further development of this essential oil.


Subject(s)
Rosa , Rats , Animals , Serotonin/metabolism , Iran , Molecular Docking Simulation , Rats, Sprague-Dawley , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/metabolism , Signal Transduction , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Synapses/metabolism , Stress, Psychological/drug therapy , Hippocampus , Disease Models, Animal
2.
Fitoterapia ; 172: 105744, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952762

ABSTRACT

PURPOSE: Frankincense has been shown in studies to have healing benefits for people with ulcerative colitis (UC). However, its underlying mechanisms have not been fully investigated. The objective of this study was to explore the potential molecular mechanisms of Frankincense essential oil (FREO) in improving dextran sodium sulfate (DSS)-induced UC from multiple perspectives. METHODS: The FREO components were analyzed by GC-MS, and the interactions between the key active components and the mechanism of FREO were determined based on RNA-seq, "quantity-effect" weighting coefficient network pharmacology, WGCNA and pharmacodynamic experiments. The protection of FREO against DSS-induced UC mice was assessed by behavioral and pathological changes through mice. The expression of pro-inflammatory cytokines was measured using enzyme-linked immunosorbent assay. The expression of MAPK and NF-κB-related proteins by the Western Blotting and immunohistochemistry method. RESULTS: Treatment with FREO significantly improved the symptoms of weight loss, diarrhea, stool blood, and colon shortening in UC mice. Reduced intestinal mucosal damage and the degree of inflammatory cell infiltration in the colon. Decreased TNF-α and IL-6 levels in mice's serum and inhibited phosphorylation of ERK, p65 in MAPK and NF-κB signaling. CONCLUSION: FREO may decrease the inflammatory response to reduce the symptoms of UC by modulating the MAPK/ NF-κB pathway. This may be due to the synergistic interaction of the effective ingredient Hepten-2-yl tiglate, 6-methyl-5-, Isoneocembrene A and P-Cymene. This study provides a promising drug candidate and a new concept for the treatment of UC.


Subject(s)
Colitis, Ulcerative , Colitis , Frankincense , Oils, Volatile , Sulfates , Humans , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , NF-kappa B/metabolism , Dextrans/metabolism , Dextrans/pharmacology , Dextrans/therapeutic use , Frankincense/metabolism , Frankincense/pharmacology , Frankincense/therapeutic use , Oils, Volatile/pharmacology , RNA-Seq , Disease Models, Animal , Molecular Structure , Dextran Sulfate/adverse effects , Dextran Sulfate/metabolism , Colon/metabolism , Colon/pathology , Mice, Inbred C57BL , Colitis/drug therapy
3.
Food Res Int ; 170: 112984, 2023 08.
Article in English | MEDLINE | ID: mdl-37316019

ABSTRACT

Sodium nitrite is commonly used as a multifunctional curing ingredient in the processing of prepared dishes, especially meat products, to impart unique color, flavor and to prolong the shelf life of such products. However, the use of sodium nitrite in the meat industry has been controversial due to potential health risks. Finding suitable substitutes for sodium nitrite and controlling nitrite residue have been a major challenge faced by the meat processing industry. This paper summarizes possible factors affecting the variation of nitrite content in the processing of prepared dishes. New strategies for controlling nitrite residues in meat dishes, including natural pre-converted nitrite, plant extracts, irradiation, non-thermal plasma and high hydrostatic pressure (HHP), are discussed in detail. The advantages and limitations of these strategies are also summarized. Raw materials, cooking techniques, packaging methods, and storage conditions all affect the content of nitrite in the prepared dishes. The use of vegetable pre-conversion nitrite and the addition of plant extracts can help reduce nitrite residues in meat products and meet the consumer demand for clean labeled meat products. Atmospheric pressure plasma, as a non-thermal pasteurization and curing process, is a promising meat processing technology. HHP has good bactericidal effect and is suitable for hurdle technology to limit the amount of sodium nitrite added. This review is intended to provide insights for the control of nitrite in the modern production of prepared dishes.


Subject(s)
Anti-Bacterial Agents , Sodium Nitrite , Atmospheric Pressure , Cooking , Plant Extracts
4.
J Texture Stud ; 54(5): 671-680, 2023 10.
Article in English | MEDLINE | ID: mdl-37218345

ABSTRACT

With the aggravation of the global aging process, more and more elderly people are facing the problem of dysphagia. The advantages of three-dimensional (3D) printing in making chewy food are increasingly prominent. In this study, the two-nozzle 3D printer was used to explore the effects of different proportions of buckwheat flour, printing filling ratio, microwave power, and time on the quality of bean-paste buns. The results showed that the bean paste filling containing 6% buckwheat flour had the best antioxidant and sensory properties. When the filling ratio was 21.6%, the microwave power was 560 W, and the time was 4 min, the obtained sample was the most satisfactory. Compared with the microwave-treated and steamed traditional samples, the chewiness of the samples was reduced by 52.43% and 15.14%, respectively, and the final product was easier to chew and swallow.


Subject(s)
Fabaceae , Fagopyrum , Flour , Printing, Three-Dimensional , Aged , Humans , Fabaceae/chemistry , Food , Heating/methods , Microwaves , Fagopyrum/chemistry , Flour/analysis , Mastication , Deglutition , Food Handling
5.
Front Pharmacol ; 14: 1175896, 2023.
Article in English | MEDLINE | ID: mdl-37124208

ABSTRACT

Objective: To investigate the dominant metabolic enzymes of six effective components (astragaloside IV, glycyrrhizic acid, calycosin-glucuronide, formononetin, ononin, calycosin-7-O-ß-D- glucoside) of Huangqi Liuyi decoction extract (HQD). Methods: Mouse liver microsomes were prepared. The effects of specific inhibitors of CYP450 enzymes on the metabolism of six effective components of HQD were studied using liver microsomal incubation in vitro. Results: The chemical inhibitors of CYP2C37 inhibit the metabolism of glycyrrhizic acid and astragaloside IV. Formononetin and astragaloside IV metabolism is inhibited by the chemical inhibitors of CYP2C11. The chemical inhibitors of CYP2E1 and CYP1A2 inhibit the metabolism of calycosin-glucuronide. Chemical CYP3A11 inhibitors prevent formononetin and glycyrrhizic acid from being metabolized. However, no inhibitor significantly affected the metabolism of ononin and calycosin-7-O-ß-D-glucoside. Conclusion: CYP2C37 may be involved in the metabolism of astragaloside IV and glycyrrhizic acid, the metabolism of astragaloside IV and formononetin may be related to CYP2C11, the metabolism of calycosin-glucuronide may be related to CYP1A2 and CYP2E1, and CYP3A11 may be involved in the metabolism of glycyrrhizic acid and formononetin. This research provides an experimental basis for exploring the pharmacokinetic differences caused by metabolic enzymes.

6.
Crit Care ; 27(1): 164, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37106370

ABSTRACT

BACKGROUND: Polymyxin B is the first-line therapy for Carbapenem-resistant organism (CRO) nosocomial pneumonia. However, clinical data for its pharmacokinetic/pharmacodynamic (PK/PD) relationship are limited. This study aimed to investigate the relationship between polymyxin B exposure and efficacy for the treatment of CRO pneumonia in critically ill patients, and to optimize the individual dosing regimens. METHODS: Patients treated with polymyxin B for CRO pneumonia were enrolled. Blood samples were assayed using a validated high-performance liquid chromatography-tandem mass spectrometry method. Population PK analysis and Monte Carlo simulation were performed using Phoenix NLME software. Logistic regression analyses and receiver operating characteristic (ROC) curve were employed to identify the significant predictors and PK/PD indices of polymyxin B efficacy. RESULTS: A total of 105 patients were included, and the population PK model was developed based on 295 plasma concentrations. AUCss,24 h/MIC (AOR = 0.97, 95% CI 0.95-0.99, p = 0.009), daily dose (AOR = 0.98, 95% CI 0.97-0.99, p = 0.028), and combination of inhaled polymyxin B (AOR = 0.32, 95% CI 0.11-0.94, p = 0.039) were independent risk factors for polymyxin B efficacy. ROC curve showed that AUCss,24 h/MIC is the most predictive PK/PD index of polymyxin B for the treatment of nosocomial pneumonia caused by CRO, and the optimal cutoff point value was 66.9 in patients receiving combination therapy with another antimicrobial. Model-based simulation suggests that the maintaining daily dose of 75 and 100 mg Q12 h could achieve ≥ 90% PTA of this clinical target at MIC values ≤ 0.5 and 1 mg/L, respectively. For patients unable to achieve the target concentration by intravenous administration, adjunctive inhalation of polymyxin B would be beneficial. CONCLUSIONS: For CRO pneumonia, daily dose of 75 and 100 mg Q12 h was recommended for clinical efficacy. Inhalation of polymyxin B is beneficial for patients who cannot achieve the target concentration by intravenous administration.


Subject(s)
Cross Infection , Healthcare-Associated Pneumonia , Pneumonia , Humans , Polymyxin B/therapeutic use , Polymyxin B/pharmacology , Anti-Bacterial Agents , Carbapenems/therapeutic use , Prospective Studies , Cross Infection/drug therapy , Healthcare-Associated Pneumonia/drug therapy , Pneumonia/drug therapy , Microbial Sensitivity Tests
7.
J Nutr Sci Vitaminol (Tokyo) ; 69(2): 105-120, 2023.
Article in English | MEDLINE | ID: mdl-37121720

ABSTRACT

The effects of folic acid on body weight gain in obesity and gut microbiota-associated branched-chain amino acids (BCAAs) and mitochondrial function were investigated. Three- to four-wk-old male C57BL/6J conventional (CV) and germ-free (GF) mice were fed a high-fat diet (HD), folic acid-supplemented HD (FSHD) and a normal-fat diet (ND) for 25 wk. In CV mice, the HD-induced increases in body weight and plasma BCAA concentrations, downregulated expression of genes related to BCAA catabolism (Bcat2, Bckdha, or Ppm1k), mitochondrial biogenesis (Pgc-1α, Cox1, Nd1 or Nd6), fusion (Mfn1, Mfn2 or Opa1) and mitophagy (Pink1 or Park2), and upregulated expression of the fission-associated gene Drp1 in epididymal fat were reversely corrected with FSHD feeding. In contrast, the expression of these genes in the liver was the opposite under HD feeding or folic acid supplementation. In GF mice, plasma BCAA concentrations were much less affected by HD feeding and were reduced by FSHD feeding, with almost no alterations in the expression of genes associated with BCAA catabolism and mitochondrial function. Further analysis indicated a correlation between adipose and hepatic Mt C/N and plasma BCAA concentrations, and the latter had a close association with specific gut bacteria. Therefore, dietary folic acid supplementation differentially affected body weight gain, BCAA catabolism, and mitochondrial dynamics and metabolism under HD feeding between CV and GF mice, suggesting that gut bacteria-altered BCAAs and mitochondria might partially share the responsibility for the beneficial effects of dietary folic acid on obesity.


Subject(s)
Gastrointestinal Microbiome , Muscular Dystrophy, Facioscapulohumeral , Male , Mice , Animals , Amino Acids, Branched-Chain/metabolism , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Weight Gain , Body Weight , Diet, High-Fat/adverse effects , Dietary Supplements , Folic Acid
8.
Zhongguo Zhen Jiu ; 42(9): 999-1003, 2022 Sep 12.
Article in Chinese | MEDLINE | ID: mdl-36075595

ABSTRACT

OBJECTIVE: To observe the clinical effect of chicken-claw needling at Xiaguan (ST 7) combined with intradermal needling on negative emotion in primary trigeminal neuralgia (PTN) of phlegm obstruction and blood stasis. METHODS: Sixty cases of patients with PTN of phlegm obstruction and blood stasis were randomly divided into an observation group and a control group, 30 cases in each group. The observation group was treated with chicken-claw needling at Xiaguan (ST 7) combined with intradermal needling (acupoints Sibai [ST 2], Yuyao [EX-HN 4], Hegu [LI 4], Taichong [LR 3] and auricular points Xin [CO15], Shenmen [TF4], Pizhixia [AT4], etc.), once a day, 6 d as a course of treatment, rest 1 d between courses, a total of 2 courses of treatment; and the control group was given oral carbamazepine tablets for 13 days. Before and after treatment, the pain visual analogue scale (VAS), TCM syndromes, self-rating anxiety scale (SAS) scores and the contents of serum neurotransmitter (ß-endorphin [ß-EP], substance P [SP] and 5-hydroxytryptamine [5-HT]) were compared, and the clinical efficacy was evaluated. RESULTS: After treatment, the VAS, SAS, TCM syndrome scores and the contents of serum SP in the two groups were lower than those before treatment (P<0.05), and the above indexes in the observation group was lower than those in the control group (P<0.05). The contents of serum ß-EP and 5-HT in the two groups were higher than those before treatment (P<0.05), and the above indexes in the observation group were higher than those in the control group (P<0.05). The total effective rate in the observation group was 93.3% (28/30), which was higher than 83.3% (25/30) in the control group (P<0.05). CONCLUSION: Chicken-claw needling at Xiaguan (ST 7) combined with intradermal needling can relieve pain symptoms and negative emotions in patients with primary trigeminal neuralgia of phlegm obstruction and blood stasis, which may be related to the regulation of serum neurotransmitter levels.


Subject(s)
Acupuncture Therapy , Trigeminal Neuralgia , Acupuncture Points , Emotions , Humans , Pain , Serotonin , Syndrome , Treatment Outcome , Trigeminal Neuralgia/therapy
9.
Front Nutr ; 9: 927434, 2022.
Article in English | MEDLINE | ID: mdl-35990355

ABSTRACT

Valerian volatile oil can be used in the treatment of insomnia; however, the active components and mechanisms of action are currently unclear. Therefore, we used transcriptome sequencing and weight coefficient network pharmacology to predict the effective components and mechanism of action of valerian volatile oil in an insomnia model induced by intraperitoneal injection of para-Chlorophenylalanine (PCPA) in SD rats. Valerian essential oil was given orally for treatment and the contents of 5-hydroxytryptamine receptor 1 A (5-HT1AR), γ-aminobutyric acid (GABA), cyclic adenosine monophosphate (cAMP), and protein kinase A (PKA) in the hippocampus of rats in each group were detected by enzyme-linked immunosorbent assay (ELISA), western blot, Polymerase Chain Reaction (PCR), and immunohistochemistry. The results showed that after treatment with valerian essential oil, insomnia rats showed significantly prolonged sleep duration and alleviated insomnia-induced tension and anxiety. Regarding the mechanism of action, we believe that caryophyllene in valerian essential oil upregulates the 5-HT1AR receptor to improve the activity or affinity of the central transmitter 5-HT, increase the release of 5-HT, couple 5-HT with a G protein coupled receptor, convert adenosine triphosphate (ATP) into cAMP (catalyzed by ADCY5), and then directly regulate the downstream pathway. Following pathway activation, we propose that the core gene protein kinase PKA activates the serotonergic synapse signal pathway to increase the expression of 5-HT and GABA, thus improving insomnia symptoms and alleviating anxiety. This study provides a theoretical basis for the application of valerian volatile oil in health food.

10.
Food Res Int ; 158: 111496, 2022 08.
Article in English | MEDLINE | ID: mdl-35840205

ABSTRACT

The feasibility of using microwave-infrared heating (MIR) to stimulate color/flavor changes of 3D-printed white radish and potato gels containing lipid-soluble natural pigment and essence microcapsules was investigated. Natural red gromwell pigment and rose essence were microencapsulated using gum Arabic/maltodextrin/ß-cyclodextrin as the wall materials and spray drying as the drying method. The microcapsules were incorporated into white radish and potato powder at different mass ratios (0, 0.3, 0.7, 1, and 2%, w/w) and the mixture were used as 3D printing ink. The storage modulus and loss modulus of printing paste were decreased with the increasing microcapsule addition; however, the viscosity was not significantly affected. The texture properties (hardness, springness, chewiness, and gumminess) of printed samples after MIR were increased significantly. The color and flavor of the samples changed in a microcapsule concentration- and heating time-dependent manner. With the prolongation of heating time, the brightness value (L*) of the printed sample added with microcapsules was decreased, while the redness (a*) and yellowness value (b*) were significantly increased. The results of electronic nose showed that the flavor of 2% (w/w) microcapsule samples was significantly different before and after heating, and the signals of sensors S1, S4, S5, S9, S11, S14, S16, S17 increased significantly after heating. This research has provided insights for the development of novel 3D printed foods with bright colors and unique flavors.


Subject(s)
Raphanus , Solanum tuberosum , Capsules , Gels , Heating , Microwaves , Printing, Three-Dimensional
11.
Nutr Metab (Lond) ; 19(1): 48, 2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35871074

ABSTRACT

BACKGROUND: The single nucleotide polymorphisms (SNPs) in the fatty acid desaturases and elongases might associate with the endogenous synthesis of polyunsaturated fatty acids (PUFAs). However, the related epidemiological evidence is still conflicting. So we aimed to clearly evaluate the interactions between maternal DHA-rich n-3 PUFAs supplementation and the known 26 SNPs on the profiles of PUFAs in the colostrum using a Chinese birth cohort. METHODS: Totally, 1050 healthy mother-infant pairs were enrolled in this study at gestational 6-8 weeks when they established their pregnancy files at Fuxing Hospital affiliated to Capital Medical University in Beijing from January to December 2018. Meanwhile, their venous blood samples were obtained for DNA extraction to detect the genotypes of SNPs in the Fads1, Fads2, Fads3, Elovl2 and Elovl5 using the Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry. Then the colostrum samples were collected to determine the profiles of PUFAs by gas chromatography. RESULTS: Maternal DHA-rich n-3 PUFAs supplementation from the early and middle pregnancy could reduce the infant BMI at birth, and impact the profiles of PUFAs in the colostrum, as higher n-3 PUFAs (EPA, DHA, DHA/ALA and DHA/EPA), lower n-6 PUFAs (AA and AA/LA) and ∑-6/n-3ΣPUFAs. Moreover, there were significant correlations between multiple SNPs and the profiles of n-6 PUFAs (rs76996928 for LA, rs174550, rs174553 and rs174609 for AA, rs174550 and rs76996928 for AA/LA) and n-3 PUFAs in the colostrum (rs174448, rs174537, rs174550, rs174553, rs174598, rs3168072, rs174455 and rs174464 for ALA, rs174550, rs174553 and rs174598 for EPA, rs174455 and rs174464 for DHA, rs174448 and rs3168072 for DHA/EPA) using the multiple linear regressions by adjusting the maternal age, gestational week, mode of delivery, infant sex and BMI at birth, and all these above significant SNPs had the cumulative effects on the profiles of PUFAs. Furthermore, the pairwise comparisons also showed the meaningful interactions between maternal DHA-rich n-3 PUFAs supplementation and related genotypes of SNPs (rs76996928 for LA, rs174598 for EPA, rs174448 for DHA and DHA/EPA) on the contents of PUFAs in the colostrum. CONCLUSIONS: Results from this birth cohort study proved that the pregnant women with the following SNPs such as Fads3 rs174455 T, Fads3 rs174464 A and Fads1 rs174448 G alleles should pay more attention on their exogenous DHA supplementation from the early and middle pregnancy for the blocked endogenous synthesis. TRIAL REGISTRATION: This study was approved by the Ethics Committee of Beijing Pediatric Research Institution, Beijing Children's Hospital affiliated to Capital Medical University (2016-08), which was also registered at the website of http://www.chictr.org.cn/showproj.aspx?proj=4673 (No: ChiCTR-OCH-14004900).

12.
Eur J Nutr ; 61(4): 2015-2031, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34993642

ABSTRACT

PURPOSE: To investigate whether the effects of dietary folic acid supplementation on body weight gain are mediated by gut microbiota in obesity. METHODS: Male C57 BL/6J conventional (CV) and germ-free (GF) mice both aged three to four weeks were fed a high-fat diet (HD), folic acid-deficient HD (FD-HD), folic acid-supplement HD (FS-HD) and a normal-fat diet (ND) for 25 weeks. Faecal microbiota were analyzed by 16S rRNA high-throughput sequencing, and the mRNA expression of genes was determined by the real-time RT-PCR. Short-chain fatty acids (SCFAs) in faeces and plasma were measured using gas chromatography-mass spectrometry. RESULTS: In CV mice, HD-induced body weight gain was inhibited by FS-HD, accompanied by declined energy intake, smaller white adipocyte size, and less whitening of brown adipose tissue. Meanwhile, the HD-induced disturbance in the expression of fat and energy metabolism-associated genes (Fas, Atgl, Hsl, Ppar-α, adiponectin, resistin, Ucp2, etc.) in epididymal fat was diminished, and the dysbiosis in faecal microbiota was lessened, by FS-HD. However, in GF mice with HD feeding, dietary folic acid supplementation had almost no effect on body weight gain and the expression of fat- and energy-associated genes. Faecal or plasma SCFA concentrations in CV and GF mice were not altered by either FD-HD or FS-HD feeding. CONCLUSION: Dietary folic acid supplementation differently affected body weight gain and associated genes' expression under HD feeding between CV and GF mice, suggesting that gut bacteria might partially share the responsibility for beneficial effects of dietary folate on obesity.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome , Animals , Diet, High-Fat/adverse effects , Dietary Supplements , Folic Acid/pharmacology , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , RNA, Ribosomal, 16S/genetics , Weight Gain
13.
Br J Nutr ; 124(4): 396-406, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32213218

ABSTRACT

Aberration in leptin expression is one of the most frequent features in the onset and progression of obesity, but the underlying mechanisms are still unclear and need to be clarified. This study investigated the effects of the absence of gut microbiota on body weight and the expression and promoter methylation of the leptin. Male C57 BL/6 J germ-free (GF) and conventional (CV) mice (aged 4-5 weeks) were fed either a normal-fat diet (NFD) or a high-fat diet (HFD) for 16 weeks. Six to eight mice from each group, at 15 weeks, were administered exogenous leptin for 7 d. Leptin expression and body weight gain in GF mice were increased by NFD with more CpG sites hypermethylated at the leptin promoter, whereas there was no change with HFD, compared with CV mice. Adipose or hepatic expression of genes associated with fat synthesis (Acc1, Fas and Srebp-1c), hydrolysis and oxidation (Atgl, Cpt1a, Cpt1c, Ppar-α and Pgc-1α) was lower, and hypothalamus expression of Pomc and Socs3 was higher in GF mice than levels in CV mice, particularly with NFD feeding. Exogenous leptin reduced body weight in both types of mice, with a greater effect on CV mice with NFD. Adipose Lep-R expression was up-regulated, and hepatic Fas and hypothalamic Socs3 were down-regulated in both types of mice. Expression of fat hydrolysis and oxidative genes (Atgl, Hsl, Cpt1a, Cpt1c, Ppar-α and Pgc-1α) was up-regulated in CV mice. Therefore, the effects of gut microbiota on the leptin expression and body weight were affected by dietary fat intake.


Subject(s)
Body Weight , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/physiology , Leptin/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Adiposity/genetics , Animals , Disease Models, Animal , Hypothalamus/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Pro-Opiomelanocortin/metabolism , Receptors, Leptin/metabolism
14.
Sci Rep ; 8(1): 16542, 2018 11 08.
Article in English | MEDLINE | ID: mdl-30410113

ABSTRACT

Calcium plays important roles in lipid metabolism and adipogenesis, but whether its status in early life affects later lipid profiles needs to be clarified. Three to four-week old C57BL/6J female mice were fed with three different reproductive diets containing normal, low (insufficient) and high (excessive) calcium concentrations respectively throughout pregnancy and lactation. At postnatal 21 days, the weaning male and female pups from each group were sacrificed for experiments and the remaining were fed with the normal chow diet for 16 weeks. Meanwhile, some of the weaning female pups from maternal low calcium diet group were fed with the normal calcium, low calcium and high calcium mature diets respectively for 8 weeks. Maternal insufficient or excessive calcium status during pregnancy and lactation programmed an abnormal expression of hepatic and adipose genes (PPAR-γ, C/EBP-α, FABP4, Fasn, UCP2, PPAR-α, HMG-Red1, Acc1, and SREBP-1c) in the offspring and this may lead to dyslipidemia and accumulation of hepatic triglyceride (TG) and total cholesterol (TC) in later life. The effects of maternal calcium status on lipid metabolism were found only in the female adult offspring, but were similar between offspring males and females at postnatal 21 days. Additionally, the dyslipidemia and hepatic lipid accumulation caused by insufficient calcium status in early life may be reversed to some extent by dietary calcium supplementation in later life.


Subject(s)
Calcium, Dietary/administration & dosage , Dyslipidemias/chemically induced , Lactation/drug effects , Prenatal Exposure Delayed Effects/genetics , Animals , Calcium, Dietary/pharmacology , Cholesterol/metabolism , Disease Models, Animal , Dyslipidemias/genetics , Dyslipidemias/metabolism , Female , Genetic Markers , Lipid Metabolism/drug effects , Liver/metabolism , Male , Maternal Nutritional Physiological Phenomena , Mice , Mice, Inbred C57BL , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Triglycerides/metabolism
15.
Int J Mol Med ; 41(2): 962-968, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29207039

ABSTRACT

Our previous study indicated that Salvia miltiorrhiza (SM) induced human placenta­derived mesenchymal stem cells (hPDMSCs) to differentiate into cardiomyocytes, however, the effective component of SM in promoting cardiomyogenic differentiation remained to be elucidated. In the present study, the most commonly examined components of SM, including danshensu, salvianolic acid B, protocatechuic aldehyde, tanshinone I (TS I), TS IIA and cryptotanshinone, were used to determine the effective components of SM in promoting cardiomyogenic differentiation. The above components of SM slowed cell growth rate and altered cell morphology with a spindle or irregular shape to different degrees. The cells treated with the above components of SM showed increasing of cardiac protein expression to differing degrees, including GATA­binding protein 4, atrial natriuretic factor, α­sarcomeric actin and cardiac troponin­I. Among the components of SM, TS IIA induced the most marked effects. In addition, the above components of SM increased the expression of phosphorylated glycogen synthase kinase­3ß, but decreased the expression of ß­catenin to different degrees, with TS IIA also having the most marked effects. In conclusion, the results of the present study suggested that TS IIA was the most effective active component of SM in inducing hPDMSCs to differentiate into cardiomyocytes, and that Wnt/ß­catenin signaling was important in the process of TS IIA promoting cardiomyogenic differentiation.


Subject(s)
Cell Differentiation/drug effects , Drugs, Chinese Herbal/administration & dosage , Mesenchymal Stem Cells/cytology , Muscle Development/genetics , Abietanes/administration & dosage , Abietanes/chemistry , Atrial Natriuretic Factor/genetics , Cell Differentiation/genetics , Drugs, Chinese Herbal/chemistry , Female , Gene Expression Regulation, Developmental/drug effects , Glycogen Synthase Kinase 3 beta/genetics , Humans , Mesenchymal Stem Cells/drug effects , Muscle Development/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Placenta/cytology , Pregnancy , Salvia miltiorrhiza/chemistry , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL